
The Asian Journal of TEX, Volume 5, No. 2, December 2011
KTS

THE KOREAN TEX SOCIETY SINCE 2007

Article revision 2011/12/4

Development of the LuaTEX-ja package

Hironori Kitagawa 北川弘典
LuaTEX-ja project team h kitagawa2001@yahoo.co.jp

KEYWORDS TEX, pTEX, LuaTEX, LuaTEX-ja, Japanese

ABSTRACT LuaTEX-ja is a macro package for typesetting Japanese documents with LuaTEX.
It enjoys improved flexibility of LuaTEX in typesetting TEX documents, elimi-
nating some unwanted features of pTEX, the widely-used variant of TEX for the
Japanese language. In this paper, we describe the specifications, the current sta-
tus, and some internal processing methods of LuaTEX-ja.

1 Introduction

pTEX [15], developed by ASCII Corp., is widely used in Japan to typeset TEX docu-
ments written in Japanese. There have been other tools, such as Omega [3] and the
CJK package [6], but they have received little attention by Japanese TEX users. The
main reason for the popularity of pTEX is that it enjoys superior typesetting quality
than alternative methods. Another reason is that pTEX has already taken the dominant
position in Japan.

However, pTEX lacks some advanced features of modern extensions of TEX, such
as ε-TEX and pdfTEX. Moreover, it does not support full range of Unicode characters.

In recent years, there have been several attempts at improving pTEX: ptexenc [13]
by Nobuyuki Tsuchimura (土村展之), ε-pTEX [18] by this author, and upTEX [12] by
Takuji Tanaka (田中琢爾). All of these attempts, including pTEX itself, have a com-
mon approach of development, i.e., to implement a localized variant of TEX for the
Japanese language. As a result, we have multiple executable programs, and it is im-
possible to use features of different extensions at the same time. The approach using
the LuaTEX engine solves the inconvenience of using multiple executables. Features of
these different extensions can be realized in the LuaTEX approach using Lua callbacks
that hook TeX’s internal process.

Prior to LuaTEX-ja [8] there were several experimental attempts at typesetting
Japanese documents in LuaTEX. Three of them are as follows.

– luaums.sty [19] developed by the present author. The package allows LuaTEX
to typeset Japanese characters.

– luajalayout [22] by Kazuki Maeda (前田一貴), formerly known as jafontspec. The
package is based on LATEX2ε and fontspec [10].

– luajp-test [20] written by Atsuhito Kohda (香田温人) based on the article [4].

Copyright © 2011 by the Korean TEX Society

66 THE ASIAN JOURNAL OF TEX

All of these attempts were based on LATEX2ε, and they did not support enough
controls required for Japanese typesetting. Moreover, it was inefficient to maintain
similar packages separately. Development of LuaTEX-ja was started initially by the
author and Kazuki Maeda.1

The initial aim of the LuaTEX-ja project was to implement the features (‘primitive’s)
of pTEX as LuaTEX macros. We wanted LuaTEX-ja to be at least as flexible as pTEX is in
typesetting Japanese documents. Compared with the Japanese typesetting standard
JIS X 4051 [5] and W3C Requirements for Japanese Text Layout [14], pTEX is more
flexible, with its tunable parameters such as \kanjiskip and \prebreakpenalty, and
its customized JFM (Japanese TFM).

It turned out, however, that straightforward implementation of pTEX features is
neither sufficient nor desirable, as will be discussed in the next section.

The second aim is that LuaTEX-ja is neither a mere re-implementation nor a porting
of pTEX. Technically and/or conceptually inconvenient features of pTEX are modified.
In Section 2 these features will be described in detail.

We now describe an outline of the process of LuaTEX-ja in order.

process input buffer callback handles ‘line-breaking’ after Japanese characters (see
Section 2.1).

hyphenate callback handles ‘font replacement’. For each glyph node p in the horizontal
list, if the character represented by p is Japanese, the font for p will be replaced
by the value of the attribute \ltj@curjfnt, ‘the current Japanese font’. Further-
more, the subtype of p is subtracted by 1 to suppress hyphenation around p.

pre linebreak filter and hpack filter callbacks handles the following processes.

1. LuaTEX-ja has its own stack system, and the current horizontal list is tra-
versed in this stage to determine what the level of LuaTEX-ja’s internal
stack is at the end of the list (see Section 5.2).

2. In this stage, LuaTEX-ja inserts glues/kerns for Japanese typesetting in the
list. This is the core routine of LuaTEX-ja (see Section 2.3).

3. While matching a font metric to a real font, adjustments to the positions of
(Japanese) glyphs are necessary at times (see Section 5.3).

mlist to hlist callback handles Japanese characters in a math formula. This process
is very similar to the position adjustments of glyphs in the previous process.

The processes above will be described in detail in Section 2 and 5. Section 2 con-
tains the major differences between pTEX and LuaTEX-ja. We concentrates on how to
distinguish Japanese characters from other characters in Section 3. The current devel-
opment status and the internal routines of LuaTEX-ja will be described in Section 4
and 5, respectively.

In this paper, an ‘alphabetic character’ means a non-Japanese character. Similarly,
we use the word an ‘alphabetic font’ as the counterpart of a Japanese font.

1. Members of the LuaTEX-ja project team are as follows (in random order): Hironori Kitagawa,
Kazuki Maeda, Takayuki Yato, Yusuke Kuroki, Noriyuki Abe, Munehiro Yamamoto, Tomoaki Honda,
and Shuzaburo Saito.

VOLUME 5, NO. 2, DECEMBER 2011 67

2 Differences between pTEX and LuaTEX-ja

In this section, we describe major differences between pTEX and LuaTEX-ja. For gen-
eral information of Japanese typesetting and an overview of pTEX, we refer to [9].

pTEX added several primitives to Knuth’s original TEX82, which are difficult to im-
plement as TEX macros. For instance, ‘\prebreakpenalty⟨char code⟩[=]⟨penalty⟩’ in-
serts a penalty ⟨penalty⟩ before every occurrence of a character ⟨char code⟩. The primi-
tive is also used in the form \prebreakpenalty⟨char code⟩ to retrieve the penalty value
assigned to the character.

On the other hand, LuaTEX-ja provides new control sequences by modifying the
internal callbacks in LuaTEX. This leads to some restrictions. We will discuss this topic
in detail in Section 5.2.

LuaTEX-ja provides the following three control sequences for assignment and re-
trieval of parameters:

– \ltjsetparameter{⟨name⟩=⟨value⟩,...} assigns ⟨value⟩ locally to a parameter
⟨name⟩.

– \ltjglobalsetparameter{⟨name⟩=⟨value⟩,...} assigns ⟨value⟩ globally to a pa-
rameter ⟨name⟩.

– \ltjgetparameter{⟨name⟩}[{⟨optional argument⟩}] retrieves the value assigned
to the parameter ⟨name⟩. The returned value is always a string.

Note that the two control sequences above for assignment obey the value of the prim-
itive \globaldefs.

2.1 Japanese characters at the end of an input line

In Japanese typesetting line-breaking is allowed after a Japanese character in contrast
to European typesetting in which either line-breaking is allowed between words or
hyphenation is used instead. So it is natural that the input processor of pTEX does
not regard an end-line character following a Japanese character as a space. How-
ever, there is no way to customize the input processor of LuaTEX without hacking
the CWEB source. A possible way of LuaTEX-ja is to modify an input line inside the
process_input_buffer callback before LuaTEX processes the line.

LuaTEX-ja appends a comment letter ‘U+FFFFF’ in order to avoid an extra space
after a Japanese character found at the end of the line.2 The behavior, at first glance,
looks the same as that of pTEX. But there is a slight difference between them as Figure 1
shows.

The assignment ‘jacharrange={-6}’ given in the second line of Figure 1 makes
LuaTEX-ja treat ‘Japanese’ characters as ‘non-Japanese’. Hence, two Japanese char-
acters ‘あ’ in the second and the third line are treated as non-Japanese. Then, why
does no space appear after the first ‘あ’ in the second line? The reason is that the as-
signment in the second line comes into effect after the second input line is processed
by the process_input_buffer callback, and then at that time LuaTEX-ja appends the
comment letter at the end of the line as mentioned above.

2. Strictly speaking, one more condition is required, that is the case when the category code of the end-line
character is 5 (end-of-line). It is useful for the feature not to work in the verbatim environment.

68 THE ASIAN JOURNAL OF TEX

1 \font\x=IPAMincho \x

2 \ltjsetparameter{jacharrange={-6}}xあ
3 y\qquad xあ
4 y

ĝɖĞ ĝɖ Ğ

FIGURE 1. Different handling of LuaTEX-ja from pTEX: Japanese
characters at the end of an input line.

2.2 Japanese font metrics

Traditional Japanese fonts are mainly fixed-width, with most glyphs designed on
square canvases. Moreover, the font metric is common among fonts; there is no sub-
stantive difference among different JFMs. For example, min10.tfm and goth10.tfm,
the two JFMs shipped with pTEX for serif mincho and sans-serif gothic families, respec-
tively, have the same contents except for the FAMILY name and the FACE name. As
another example, jis.tfm and jisg.tfm used in jsclasses [16] by Haruhiko Okumura
(奥村晴彦) are completely identical.

LuaTEX-ja separates ‘real’ fonts and font metrics. The following example shows
typical declarations of Japanese fonts in the style of plain TEX.

\jfont\foo=file:ipam.ttf:jfm=ujis;script=latn;-kern;+jp04 at 12pt

\jfont\bar=psft:Ryumin-Light:jfm=ujis at 10pt

Here are some remarks:

– A control sequence \jfont must be used for Japanese fonts, instead of \font.

– LuaTEX-ja automatically loads the luaotfload package, so the prefixes, ‘file:’
and ‘name:’, and various font features can be used as shown in the first line of
the example above.

– The ‘jfm’ key specifies the font metric associated with the font. In the example,
the two fonts, \foo and \bar, will use the same font metric stored in the Lua
script ‘jfm-ujis.lua’. It is a standard metric in LuaTEX-ja, based on JFMs used
in the otf package [21].

– The ‘psft:’ prefix specifies non-embedded fonts having only names. Non-
embedded fonts, if included in a PDF file, will be replaced by actual fonts in
the PDF reader.

The specification of a font metric for LuaTEX-ja is similar to that of a JFM.3 Char-
acters are grouped into several classes, the size information of characters are specified
for each class, and glue/kern insertions are specified for each pair of classes. It is pos-
sible to develop a program that converts a JFM to a font metric for LuaTEX-ja. LuaTEX-
ja provides three font metrics by default; jfm-ujis.lua and jfm-jis.lua based on
the jis font metric, and jfm-min.lua based on the old min10.tfm.

Note that the font feature ‘-kern’ is important, because the kerning information
from a real font will clash with the glue/kern information from the font metric.

3. For the specification of JFM, see [9].

VOLUME 5, NO. 2, DECEMBER 2011 69

2.3 Glues and kerns for Japanese characters

As described in [7] LuaTEX handles kerning and ligature in a totally different way
compared to TEX82. TEX82 processes kerning and ligature whenever a (sequence of)
character is appended to the current list. On the other hand, LuaTEX is node-based, in
other words, LuaTEX do the process at the end of a horizontal box or a paragraph.
This is the reason why ‘f{}irm’ and ‘firm’ yield the same output in LuaTEX.

The situation for Japanese characters is more complicated. Glues and kerns are
divided into the following three categories in Japanese typesetting:

– A glue (or kern) from the Japanese font metrics, called ‘JFM glue’ for short.

– Default glue between a Japanese character and an alphabetic character, called
‘xkanjiskip’. The length is, in usual, 1/4 of the full-width (shibuaki) with some
stretch and shrink.

– Default glue between two consecutive Japanese characters, called ‘kanjiskip’. The
main role of this glue is to allow line-breaking after Japanese characters. In most
cases, the length is zero with some stretch and shrink.

These three categories are handled differently in pTEX. A JFM glue is inserted when
a (sequence of) Japanese character is appended to the current list, in the same way as
a glue is inserted after a word of alphabetic characters in TEX82. Hence, {} prevents
pTEX from inserting a glue. A xkanjiskip is inserted just before the process of ‘hpack’
or the process of breaking lines in a paragraph. The processing time is quite similar
to that of the kerning process of LuaTEX. Finally, a kanjiskip is not appeared as a
node anywhere. It appears implicitly in calculating the width of a horizontal box,
the process of breaking lines and DVI output. These specifications have made pTEX’s
behavior very hard to understand.

LuaTEX-ja handles all three categories at the same time inside the LuaTEX call-
backs, hpack_filter and pre_linebreak_filter. It makes the process of LuaTEX-ja
more clear and simple than pTEX.

We now investigate the process of glues and kerns in detail.

Nodes ignored in the process of glues and kerns

In the process of glues and kerns, LuaTEX-ja ignores anything that does not make
a node, as shown in the example (1) of Table 1.4 Moreover, any nodes that contribute
nothing to the current horizontal list (ins node, adjust node, mark node, whatsit node and
penalty node) are also ignored, as shown in the example (4) of the same table.

It happens that some nodes are attached to a glyph node, for example, an aceent or
a kern for italic correction.5 LuaTEX-ja ignores these attached nodes inside the process.
It is the same behavior as that of pTEX (version p3.2), see the example (2) in Table 1.

How do the users of LuaTEX-ja prevent ignoring nodes? One solution is to put an
empty horizontal box ‘\hbox{}’ at the appropriate place, as the example (3) in Table 1.

4. In the detailed output of the example (1) in Table 1, notice that pTEX inserts two half-width glues
between ‘】’ and ‘【’. The left glue is from ‘】’ and the right glue is from ‘【’.
5. TEX82 (and LuaTEX) does not distinguish a kern for italic correction from an explicit kern. To dis-
tinguish them, pTEX requires an additional subtype for a kern. On the other hand, LuaTEX-ja uses an
additional attribute and redefines ‘\/’ to set the attribute.

70 THE ASIAN JOURNAL OF TEX

TABLE 1. Different behavior of LuaTEX-ja in handling glues.

(1) (2) (3) (4)
Input あ】{}【〕\/〔 い』\/a う）\hbox{}（ え］\special{}［

pTEX あ】【〕〔 い』a う）（ え］［
LuaTEX-ja あ】【〕〔 い』a う）（ え］［

The figure below is the detailed output of the example (1) produced by pTEX.

あ】【〕〔
Glues between Japanese characters

Consider the following input and its output processed by pTEX and by LuaTEX-ja.

1 明朝）\gt （ゴシック 明朝）（ゴシック (pTEX) 明朝）（ゴシック (LuaTEX-ja)

Note that the Japanese characters on the left of ‘\gt’ are typeset by a serif Japanese
font and the characters on the right are typeset by a sans-serif font. Even though two
different Japanese fonts are used, they use the same font metric as mentioned before.
In the case of pTEX, two half-width glues are inserted between the Japanese characters.
On the other hand, LuaTEX-ja inserts only one glue because it treats Japanese fonts
with the same font metric as one font. It is also possible to change the default behavior
in LuaTEX-ja. We leave it to the manual [8].

The following example shows the case of adjacent Japanese characters having dif-
ferent font metrics and/or different size.

1 漢）\gt （漢）\large （大 漢）（漢）（大 (pTEX)

The default behavior of LuaTEX-ja in this case is different from that of pTEX. The
size of a glue that LuaTEX-ja inserts between Japanese characters is the average of the
two glues associated to the left and the right character. The following figure shows
the output of LuaTEX-ja.

漢
a
）(1)（漢）(2)（大

1.2a

The width of the glue (1) is (a2 + a
2)/2 = 0.5a, and the width of the glue (2) is (a2 +

1.2a
2)/2 = 0.55a. The default behavior can be changed by the ‘differentjfm’ parame-

ter in LuaTEX-ja.

kanjiskip and xkanjiskip

In pTEX, the value of xkanjiskip is controlled by the control sequence \xkanjiskip.
One defect of the implementation of pTEX is that the value of xkanjiskip is not related
to the size of the current Japanese font. It seems that the parameters, EXTRASPACE,

VOLUME 5, NO. 2, DECEMBER 2011 71

TABLE 2. Intersection of JIS X 0208 and Latin-1 Supplement.

§ (U+00A7), ¨ (U+00A8), ° (U+00B0), ± (U+00B1),
´ (U+00B4), ¶ (U+00B6), × (U+00D7), ÷ (U+00F7)

EXTRASTRETCH, and EXTRASHRINK in a JFM are reserved for specifying the default value
of xkanjiskip in a unit of the design size, but pTEX never use the parameters.

On the contrary, LuaTEX-ja uses the value of xkanjiskip specified in a font metric. If
the value of xkanjiskip on the user side (that is the value of xkanjiskip parameter of
\ltjsetparameter) is \maxdimen, then LuaTEX-ja extracts the value of xkanjiskip from
the current font metric. This description is also applied to kanjiskip.

3 Distinguishing Japanese characters

Since LuaTEX can handle Unicode natively, it becomes an important problem to distin-
guish Japanese characters from alphabetic characters. For example, the multiplication
sign (U+00D7) exists both in ISO-8859-1 (hence in Latin-1 Supplement in Unicode) and
in JIS X 0208. It is not desirable that this character is always treated as an alphabetic
character, because it is often used in the meaning of ‘negative’ in Japan.

3.1 Character ranges

We first review how upTEX [12] distinguishes Japanese characters. upTEX extends the
\kcatcode primitive in pTEX, in order to divide Unicode characters, for example, al-
phabetic characters (15), kanji (16), kana (17), Hangul (17), and other CJK characters (18).
It is also possible to assign a \kcatcode number to a Unicode block.6

LuaTEX-ja adopts a different approach. There are many Unicode blocks in ‘Basic
Multilingual Plane’ which are not included in Japanese fonts. Furthermore, JIS X 0208
is not a union of Unicode blocks; for example, see the intersection of JIS X 0208 and
Latin-1 Supplement in Table 2. In LuaTEX-ja one has to define in advance the ranges
of character codes in the source to customize the range of Japanese characters.

We note that LuaTEX-ja provides two additional control sequences, \ltjjachar
and \ltjalchar, which are similar to the primitive \char. The control sequence
\ltjjachar yields a Japanese character provided its argument is more than or equal
to 128. On the other hand, \ltjalchar always yields an alphabetic character regard-
less of the argument.

3.2 Predefined ranges

In the patches for plain TEX and LATEX2ε, LuaTEX-ja predefines eight character ranges,
as shown in Table 3. Almost all of these ranges are just the union of Unicode blocks,
and are determined from the ‘Adobe-Japan1-6’ character collection [1] and JIS X 0208.
Among the eight ranges, the ranges 2, 3, 6, 7, and 8 are considered as the ranges of
Japanese characters, and others are considered as the ranges of alphabetic characters.

We make a remark on the range 2 and 8:

6. There are some exceptions. For example, U+FF00–FFEF (halfwidth and fullwidth forms) are divided
into three blocks in the recent version of upTEX.

72 THE ASIAN JOURNAL OF TEX

TABLE 3. Predefined ranges in LuaTEX-ja.
1 (Additional) Latin characters which are not belonged in the range 8.
2 Greek and Cyrillic letters.
3 Punctuations and miscellaneous symbols.
4 Unicode blocks which does not intersect with Adobe-Japan1-6.
5 Surrogates and supplementary private use Areas.
6 Characters used in Japanese typesetting.
7 Characters possibly used in CJK typesetting, but not in Japanese.
8 Characters in Table 2.

The range 2 JIS X 0208 includes Greek and Cyrillic letters, however, these letters can-
not be used for typesetting Greek or Russian. It is reasonable that Greek and
Cyrillic letters form another character range.

The range 8 To use 8-bit TFMs, such as T1 or TS1 encodings, the range 8 should be
marked as a range of alphabetic characters as follows:

\ltjsetparameter{jacharrange={-8}}

Some 8-bit TFMs have a glyph in this range; for example, the character ‘Œ’ is
located at "D7 in the T1 encoding.

3.3 Unicode characters

The ‘fontspec’ package provides various control sequences producing Unicode char-
acters.7 However, these control sequences do not work correctly with the predefined
range settings of LuaTEX-ja. For example, \textquotedblleft is just an abbreviation
of ‘\char"201C\relax’, and the character ‘U+201C (LEFT DOUBLE QUOTATION
MARK)’ is treated as a Japanese character, because it belongs to the range 3. This
problem can be resolved by using \ltjalchar instead of the primitive \char. It is
included in the optional package ‘luatexja-fontspec.sty’. The following example
shows several ways to typeset a character, both as a Japanese character and as an
alphabetic character.

1 ×, \char‘×, % depend on range setting

2 \ltjalchar‘×, % alphabetic char

3 \ltjjachar‘×, % Japanese char

4 \texttimes % alph. char (by fontspec)

ǂ

The situation looks similar in math formulas, but in fact it differs. Each control
sequence that represents an ordinary symbol defined by the unicode-math package
is just a synonym of a character. For example, the meaning of \otimes is just the
character ‘U+2297 (CIRCLED TIMES)’ included in the range 3. However, it is difficult
to define a control sequence like \ltjalUmathchar as a counterpart of \Umathchar,
since an input like ‘\sum^\ltjalUmathchar...’ should be permitted.

LuaTEX-ja does not give a satisfactory solution to this problem. The following
candidates are being tested for a solution:

7. More precisely, the role is played by the ‘xunicode’ package, originally a package for X ETEX and auto-
matically loaded by the fontspec package.

VOLUME 5, NO. 2, DECEMBER 2011 73

– LuaTEX-ja has a list of character codes which will be always treated as alphabetic
characters in math mode. Considering 8-bit TFMs for math symbols, this list
includes natural numbers between "80 and "FF by default.

– Redefine internal commands defined in the unicode-math package so that char-
acter codes mentioned in the unicode-math package will be included in the list.

4 Current status of LuaTEX-ja

We investigate the current status of LuaTEX-ja part by part.8 The development of the
lowest part of LuaTEX-ja is almost finished, which corresponds to the implementation
of pTEX as an extension of TEX. However, LuaTEX-ja does not support yet the vertical
typesetting called ‘tategaki’ in Japanese.

We now explain the feature ‘baseline shift’ of LuaTEX-ja in detail. To achieve better
balance between Japanese and alphabetic characters it is required to shift appropri-
ately the baseline of alphabetic characters. The dimension \ybaselineshift in pTEX
controls how much the baseline of alphabetic characters shift down. LuaTEX-ja pro-
vides two parameters, ‘yjabaselineshift’ and ‘yalbaselineshift’, for the baseline
shift of Japanese and alphabetic characters, respectively.

漢字 ph 漢字 ph
In the figure above, the left half shows the baseline shift (down) of Japanese charac-

ters when yjabaselineshift is positive. On the other hand, the right half shows the
baseline shift (down) of alphabetic characters in the case of positive yalbaselineshift.
An interesting application of these parameters is shown in the following figure.

ab本文（注釈 comment）本文
4.1 Patches for plain TEX and LATEX2ε

pTEX provides patches to support the plain TEX macros and LATEX2ε macros. The
default setting of Japanese hyphenation called ‘kinsoku shori’ is also provided in the
file ‘kinsoku.tex’. These patches are ported to LuaTEX-ja except for the codes related
to vertical typesetting.

We remark on the behavior of \fontfamily that changes in pLATEX2ε the current
alphabetic and/or Japanese font family. More precisely, \fontfamily{⟨arg⟩} changes
the current alphabetic font family to ⟨arg⟩ if and only if one of the following conditions
is satisfied:

– An alphabetic font family ⟨arg⟩ in some alphabetic encoding is already defined
in the document.

8. At the moment, LuaTEX-ja runs under plain TEX and under LATEX2ε. In order to typeset Japanese
characters only, it is enough to load luatexja.sty using \input or \usepackage in LATEX2ε.

74 THE ASIAN JOURNAL OF TEX

– An alphabetic encoding ⟨enc⟩ is already defined in the document and a font
definition file ‘⟨enc⟩⟨arg⟩.fd’ (all lowercase) exists.

The same criterion is also used for changing the current Japanese font family.
Notice that a list of all (alphabetic) encodings defined in the document is required

for this behavior of \fontfamily. But there is no way of LuaTEX-ja having such a list,
since LuaTEX-ja is loaded as a macro package. LuaTEX-ja adopts a different approach,
that is, \fontfamily{⟨arg⟩} changes the current alphabetic font family to ⟨arg⟩ if and
only if:

– An alphabetic font family ⟨arg⟩ in the current alphabetic encoding ⟨enc⟩ is al-
ready defined in the document.

– A font definition file ‘⟨enc⟩⟨arg⟩.fd’ (all lowercase) exists.

4.2 Classes and packages for Japanese documents

To produce ‘high-quality’ Japanese documents, we need not only Japanese characters
correctly placed but also a class file for Japanese documents. Two major families of
classes are widely used in Japan. One is ‘jclasses’ distributed with the official pLATEX2ε
macros, and the other is ‘jsclasses’. LuaTEX-ja contains their counterparts, ‘ltjclasses’
and ‘ltjsclasses’. However, the policy on class files is not settled yet.9

Apart from the patches for the kernel of LATEX2ε and class files for Japanese docu-
ments, we need to make a patch for some macro packages.

The ‘fontspec’ package is built on NFSS2, so the control sequences provided by the
package, such as \setmainfont, are only effective for alphabetic fonts if LuaTEX-ja is
loaded. The counterpart for Japanese fonts is provided by ‘luatexja-fontspec.sty’
(not automatically loaded), with an additional ‘j’ in the name of each control sequence,
for example \setmainjfont. It also includes a patch for control sequences producing
Unicode characters (see Section 3.3).

The ‘otf’ package is widely used in pTEX for (1) typesetting characters not included
in JIS X 0208, and (2) using more than one font weights for mincho and gothic font
families. LuaTEX-ja supports these features by loading ‘luatexja-otf.sty’ manually.
In order to avoid the callbacks called by the luaotfload package, that characters given
by \UTF and \CID are not appended to the current list as a glyph node. We note that
\CID does not work with TrueType fonts, since it uses a conversion table between CID
and the glyph order of the current Japanese font.

The patch ‘jlisting.sty’ for the ‘listings’ package is well known for pTEX users,
which allows Japanese characters in the lstlisting environment. The patch can also
be used in LuaTEX-ja. But a Japanese character following a space is not processed by
the listings package; it is inconvenient when we use the showexpl package.

There is another way in [2] to use characters whose code are above 256 with the
listings package. However, this method is not suitable for Japanese characters, since
the number of Japanese characters is very large.

9. We hope that another family of class files is available for commercial printing. On the other hand,
ltjclasses should be useful as an example for porting class files from pTEX to LuaTEX-ja.

VOLUME 5, NO. 2, DECEMBER 2011 75

1 void package(int c)

2 {

3 ...

4 d = box_max_depth;

5 unsave();

6 save_ptr -= 4;

7 if (cur_list.mode_field == -hmode) {

8 cur_box = filtered_hpack(cur_list.head_field,

9 cur_list.tail_field, saved_value(1),

10 saved_level(1), grp, saved_level(2));

11 subtype(cur_box) = HLIST_SUBTYPE_HBOX;

12 } else {

FIGURE 2. A part of the CWEB source tex/packaging.w in LuaTEX
(SVN revision 4358).

5 Implementation

5.1 Handling Japanese fonts

pTEX uses three slots to maintain the current font, one for an alphabetic font as TEX82,
and the other two for Japanese fonts in horizontal and vertical direction, respectively.
How do we implement the concept of the current Japanese fonts in LuaTEX that has
only one slot for the current alphabetic font?

There are three approaches to implement this feature. One is a mapping table in
which each alphabetic font corresponds to specific Japanese fonts. Here, we don’t
assume that NFSS2 is available. The second one is a composite font consisting of
alphabetic fonts and Japanese fonts. LuaTEX-ja follows the third approach storing the
information of the current Japanese font as an attribute provided by LuaTEX.

As the example in Section 2.2 shows, LuaTEX-ja uses the control sequence \jfont

to define Japanese fonts in the same way as pTEX. However, the control sequences
defined by \jfont (e.g., \foo and \bar in the example) cannot be used to extract font
information by means of an ordinary way of TEX, for instance, as an argument of \the,
\fontname, and \textfont.

The callbacks called by the luaotfload package (e.g., replacement of glyphs accord-
ing to OpenType font features) are performed immediately after the process ‘exam-
ination of stack level’ (see Section 5.2). After these callbacks were called, character
class is calculated for each Japanese character.

5.2 Stack management

It is not possible by TEX macros to implement a parameter (e.g., kanjiskip) the value of
which at the end of a horizontal box (or paragraph) is applied to every place in the
box (or paragraph). We describe how to implement this parameter in LuaTEX-ja.

Figure 2 shows a part of the function ‘package()’ that is called immediately after
an explicit horizontal box or a vertical box is ended by LuaTEX. The hpack_filter

callback and then the actual ‘hpack’ process are to be called from ‘filtered_hpack()’
in the eighth line of the source. Notice that the function ‘unsave()’ in the fifth line is
called before filtered_hpack(). It is the reason why we can retrieve only the values

76 THE ASIAN JOURNAL OF TEX

of registers outside the box, even in the hpack_filter callback.
LuaTEX-ja implements its own stack system to solve this problem, based on the

Lua codes in [11]. Furthermore, whatsit nodes whose user id is 30112 (called stack node,
for short) are appended to the current horizontal list whenever the current stack level
increases and the value is the same as that of \currentgrouplevel at that time. In the
beginning of the hpack_filter callback, the list in question is traversed to determine
whether the two stack levels at the end of the list and outside the box coincides.

Let x be the value of \currentgrouplevel and let y be the current stack level,
both inside the hpack_filter callback (or outside a horizontal box). Consider a list
containing the elements in the box.

– A stack node whose value is x+1 in the list corresponds to an assignment related
to the stack system in the top level of the list, for example,

\hbox{...(assignment)...}

Because all elements in the box are included in a group \hbox{...}, the value
of \currentgrouplevel inside the box is at least x + 1. In this case, the current
stack level is incremented to y + 1 after the assignment.

– A stack node whose value is more than x+ 1 in the list corresponds to an assign-
ment inside another group contained in the box. For example,

\hbox{...{...{...(assignment)}...}...}

creates a stack node whose value is x+ 3 = (x+ 1) + 2.

Therefore, we conclude that the stack level at the end of the list is y + 1 if and only if
there is a stack node whose value is x+ 1. Otherwise, the stack level is just y.

5.3 Adjustment of the position of Japanese characters

It happens in usual that the size of a glyph specified in a font metric differs from the
one specified in a real font. For example, the letter ‘【’ is half-width in jfm-ujis.lua or
jis.tfm, while it is full-width in many TrueType fonts used in Japanese typesetting,
such as IPA Mincho. Hence we need to adjust the positions of such glyphs. Virtual
fonts are used in pTEX for this process of adjustment.

On the other hand, LuaTEX-ja does the adjustment by encapsulating a glyph into a
horizontal box. There are two main reasons why this method was adopted. The first
reason is the size of the Lua codes that coexist with the callbacks called by the luaot-
fload package if virtual fonts are used. The other reason is to cope with the baseline
shift of characters at the same time.

Figure 3 shows the adjustment process. The large square M is the imaginary body
of a Japanese character specified in the font metric, and the rectangle inside M is the
imaginary body of the real glyph. First of all, the real glyph is horizontally aligned
with respect to the width of M . In the figure, it is aligned horizontally in the center.
This alignment is useful for the full-width middle dot ‘・’. There are another adjust-
ments, the ‘left’ and the ‘right’ shift. The real glyph aligned horizontally is shifted
according to the values of left and down that are specified in the font metric for fine
refinement. The final position of the real glyph is shown in the figure by the gray
rectangle R. Furthermore, M and hence the real glyph are shifted if the base line shift
is required.

VOLUME 5, NO. 2, DECEMBER 2011 77

R

6

-

M

?

height

depth

width

�
left

?down

FIGURE 3. Adjustment of the position of a Japanese character.

A brief remark on the vertical positioning of a real glyph is in order. A JFM (or a
font metric used in LuaTEX-ja) and a real font may have different heights or depths for
a specific character.10 In this case, it may be better if the real glyph is shifted vertically
to match the height-depth ratio specified in the metric. We are going to implement
this feature after the implementation details are agreed upon.

5.4 Further notes on font metrics in LuaTEX-ja

Proportional Japanese fonts

There are proportional Japanese fonts in which each glyph has its own width. One
example is ‘IPA P Mincho’. It is very hard to use these fonts in pTEX, because one
needs to make a dedicated JFM for a real font.

LuaTEX-ja supports proportional Japanese fonts. If the width of a character class
is specified as ‘prop’ in a font metric, then the width of all characters in the character
class comes from that of the corresponding glyph in the real font. If no JFM glue is
needed, it is enough to use jfm-prop.lua. In the following example, the first line
shows the fixed-width, on the contrary, the second one shows proportional width.

1 \jfont\pr=file:ipamp.ttf:jfm=prop at 3.25mm

2 あいうえお\\\pr{}あいうえお
ɖɘɚɜɞ
⎃⎅⎇⎉⎋

Scaling by font metrics

Traditional JFMs of pTEX, such as min10.tfm and jis.tfm, specify the width of
a fullwidth glyph as 0.962216 times the design size. This means that in the default
10 pt setting, the Japanese fullwidth glyph is 9.62216 pt wide. If one wants to use
3.25 mm (13 Q or 13 quarter-mm) Japanese fonts and 10 pt alphabetic fonts in pTEX,
for example, we need to scale Japanese fonts by

3.25mm

10pt · 0.962216
≃ 0.961

in the declaration of a Japanese font.
LuaTEX-ja didn’t support such scaling of glyphs by font metrics, so one has to

adjust manually the size argument of \jfont. Continuing the previous example, to

10. Otobe [17] carefully discusses this issue.

78 THE ASIAN JOURNAL OF TEX

use 3.25 mm Japanese fonts and 10 pt alphabetic fonts in LuaTEX-ja, we need to scale
a Japanese font by 3.25 mm/10 pt ≃ 0.925.

6 Conclusion

We have discussed LuaTEX-ja, a macro package for typesetting Japanese documents in
LuaTEX. Even though LuaTEX-ja is highly affected by pTEX, it is more powerful than
pTEX, because of the flexibility coming from the Lua programming language embed-
ded in LuaTEX. LuaTEX-ja is still at the experimental stage, and many refinements are
required for regular use. The author hopes that this paper and the LuaTEX-ja project
contribute to typesetting of Japanese language and possibly other Asian languages.

Acknowledgements

The author would like to thank Ken Nakano and Hideaki Togashi for their devel-
opment and management of ASCII pTEX. The author is very grateful to Haruhiko
Okumura for his leadership in the Japanese TEX community. The author is also very
grateful to the members of the LuaTEX-ja project team for their valuable cooperation
in development.

References

1. Adobe Systems Incorporated, Adobe-Japan1-6 Character Collection for CID-Keyed Fonts, Tech-
nical Note #5078, 2004. http://partners.adobe.com/public/developer/en/font/5078.
Adobe-Japan1-6.pdf

2. John Baker, Typesetting UTF8 APL code with the LATEX lstlisting package.
http://bakerjd99.wordpress.com/2011/08/15/

3. Jin-Hwan Cho and Haruhiko Okumura, Typesetting CJK Languages with Omega, TEX, XML,
and Digital Typography, Lecture Notes in Computer Science, vol. 3130, Springer, 2004, 139–
148.

4. Yannis Haralambous, The Joy of LuaTEX. http://luatex.bluwiki.com

5. Japanese Industrial Standards Committee, JIS X 4051: Formatting rules for Japanese docu-
ments, 1993, 1995, 2004.

6. Werner Lemberg, The CJK package for LATEX. CTAN:language/chinese/CJK/

7. LuaTEX development team, The LuaTEX reference.
http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf

8. LuaTEX-ja project team, The LuaTEX-ja package.
http://sourceforge.jp/projects/luatex-ja/ Documentations (not completed yet)

written in English and Japanese are available in the Git repository.

9. Haruhiko Okumura, pTEX and Japanese Typesetting, The Asian Journal of TEX 2 (2008), 43–51.

10. Will Robertson and Khaled Hosny, The fontspec package.
CTAN:macros/latex/contrib/fontspec/

11. Jonathan Sauer, [Dev-luatex] tex.currentgrouplevel.
http://www.ntg.nl/pipermail/dev-luatex/2008-August/001765.html

VOLUME 5, NO. 2, DECEMBER 2011 79

12. Takuji Tanaka, upTEX, upLATEX—unicode version of pTEX, pLATEX.
http://homepage3.nifty.com/ttk/comp/tex/uptex_en.html

13. Nobuyuki Tsuchimura and Yusuke Kuroki, Development of Japanese TEX Environment, The
Asian Journal of TEX 2 (2008), 53–62.

14. W3C Working Group, Requirements for Japanese Text Layout. http://www.w3.org/TR/

jlreq/

15. アスキー・メディアワークス,アスキー日本語 TEX (pTEX).
http://ascii.asciimw.jp/pb/ptex/

16. 奥村晴彦, pLATEX2ε 新ドキュメントクラス.
http://oku.edu.mie-u.ac.jp/~okumura/jsclasses/

17. 乙部厳己, min10フォントについて.
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf

18. 北川弘典, ε-pTEXについてのwiki.
http://sourceforge.jp/projects/eptex/wiki/FrontPage

19. 北川弘典, LuaTEXで日本語.
http://oku.edu.mie-u.ac.jp/tex/mod/forum/discuss.php?d=378

20. 香田温人, LuaTEXと日本語.
http://www1.pm.tokushima-u.ac.jp/~kohda/tex/luatex-old.html

21. 齋藤修三郎, Open Type Font用 VF. http://psitau.kitunebi.com/otf.html

22. 前田一貴, luajalayoutパッケージ—LuaLATEXによる日本語組版—.
http://www-is.amp.i.kyoto-u.ac.jp/lab/kmaeda/lualatex/luajalayout/

