
The Asian Journal of TEX, Volume 4, No. 2, December 2010
KTS

THE KOREAN TEX SOCIETY SINCE 2007

Article revision 2010/12/27

BTEX-based Manuscript Writing Support
System for Researchers*

Shin-ichi Todoroki
National Institute for Materials Science,
Namiki 1-1, Tsukuba, Ibaraki
305-0044, Japan
Todoroki.Shin-ichi@nims.go.jp

Tomoya Konishi
Anan National College of Technology,
265 Aoki Minobayashi, Anan, Tokushima
774-0017, Japan
konishi@anan-nct.ac.jp

K BTEX, Ruby, Publication list

A A list of publications can help researcherswith their writing if each item on the list
includes links to their manuscript files stored in their personal computers. This is
because they can quickly find their previous work, figures and photographs from
the list and reduce their writing time by reusing them. We have developed a sys-
tem providing such lists on a web browser by using Ruby scripts and BTEX bib
files. This system is designed to generate an author’s list of publications in var-
ious formats and to manage current manuscripts to provide an adequate return
for keeping the database up to date.

1 Introduction

When writing a research paper, we often want to see material that we prepared and
saved in the past including text, figures, and photographs. Thus, it is important to be
able to retrieve any files that we might have saved in our personal computers (PC).
If we can find the materials we need immediately, we can reuse part of them in the
currentmanuscript and thus save time. This becomesmuchmore important over time,
because we will have a large number of stored documents and less time to devote to
writing.

On the other hand, researchers must keep a list recording of their research publica-
tions because such lists are important when applying for jobs, promotion and funding.
Thus, it makes sense to use the list as a portal to the files stored in a PC, namely, as
a tool for retrieving past manuscripts. Since most of the files in researchers’ PCs are
closely related to items in their list of publications, they can easily recall any target file
via their memory of related publication activities [1]. Thus, it is very convenient for
researchers to have a personal publication list where each item has links to the related
local files.

*A Japanese translation of this article is available at the homepage of the Asian Journal of TEX, http:
//ajt.ktug.kr.

Copyright © 2010 by the Korean TEX Society

 T A J  TEX

The use of reference management software [7] appears to be a convenient way of
compiling such a publication list. However, this kind of software is not necessarily
designed for managing manuscripts in a PC. We therefore have to add certain func-
tions to the software. In addition, we have to focus on the fact that we produce new
files every day. Thus, the list should be updated as frequently as possible by its owner
with as little effort as possible.

In this report, we describe such a manuscript writing support system based on
BTEX [5] and Ruby [10], namely Ruby scripts manipulating BTEX bib files with a
web user interface. Its design and implementation are reported in Sec. 2 and 3 respec-
tively and Sec. 4 provides our conclusion.

2 Design of sustainably manageable publication list

2.1 Policy

The functions we must add to the reference management software are as follows:

– A function for registering additional information, such as path to manuscript
files, into the database of the software

– A function for modifying the layout of the list to include links and/or buttons1

for opening the manuscript files

In addition, we have to design an update procedure (1) that is simple enough not
to disturb our daily work and (2) that gives us an adequate return for keeping it up to
date.

To meet the second requirement, it is a good idea to update automatically and si-
multaneously both the list itself and other versions such as the lists published on re-
searchers’ homepages [1]. In addition, it is very effective to generate a deadline list for
manuscripts in preparation. One of the present authors has beenmotivated by this list
to keep his main list updated for six years. The following describes the procedure for
constructing this deadline list.

1. When writing a new manuscript, register related information in the reference
management software database, including its deadline, the path to the manu-
script in the author’s PC, and, if needed, web sites providing related information
(style guide, conference venue, etc.).

2. Run the software to select the entries including the deadline and show them
sorted by date. Each item includes the following links (see F. 1 right).

(a) A link to launch a shell terminal (or a folder window) at the folder in which
the manuscript is saved. This is the starting point for writing work.

(b) A link to launch an application for modifying the database entry of the
manuscript. This should be clicked before updating the list.

(c) Links to access the web sites registered in the database.

In brief, each item in this list contains two starting points, one for manuscript writ-
ing and one for database management. After the manuscript is published, related

1. For simplicity, we use ‘links’ in the following text.

V , N. , D  

Past Present Future

Nov. 23(tue), 2010: Deadline
 S. Todoroki and T. Konishi: ‘‘BibTeX-based
 manuscript writing support system for
 researchers’’, The Asian Journal of TeX.

Oct. 23(sat), 2010: Presentation
 T. Konishi and S. Todoroki: ‘‘BibTeX-based
 manuscript writing support system for
 researchers’’, TeX Conference Japan 2010.

Konishi10TeX Manuscript Homepage
 URL Map

Todoroki10AJTeX Manuscript Homepage
URL

[1] S. Todoroki: ‘‘Beyond standard slideware:
 Audience-oriented slide preparation using
 LaTeX and scripting language’’,
 The Asian Journal of TeX, 3 [2] pp.109-118 (2009).

Todoroki09AJTeX Manuscript Homepage
 URL

[2] S. Todoroki: ‘‘Upgrade your slides with Rule of
 Three and LaTeX’’, TeX Conference Japan 2009
 (Translated slides; the talk was given in Japanese)

Todoroki09TeX Manuscript Homepage URL
Map ’09/8/29

Edit
Update

Modify DBReuse

 Schedule

D
ea

dl
in

e

D
ea

dl
in

e

D
ea

dl
in

e

P
ub

lic
at

io
n

P
re

se
nt

at
io

n
 Publication List

(a)(b)(a)

Refer

(c)

(See Fig.2)

F . Relationship between the lists of deadlines and publica-
tions in this system.

bibliographic information is registered in the database, and the corresponding item
is moved to the publication list (see F. 1 upper left) with these two starting points,
which will be used later to access the manuscript and correct its database record.

These functions should be conveniently implemented to meet the requirement (1)
mentioned above.

2.2 Choice of reference management software

We decided to use BTEX bib files for bibliographic data storage because of the fol-
lowings reasons in addition to that we have been using BTEX for a long time.

Simple format: The text-based file format is easy to read and edit for human. Moreover,
various parsers are available other than BTEX and some are written in light
weight scripting languages including Ruby, Phython and Perl.

Extensibility: Since the number of reserved words is limited and user-defined fields
are ignored by BTEX, the users can extend the fields without any compatibility
violations.

Data portability: Practically, it is one of the standard formats for bibliographic informa-
tion. Thus, the users can import data from other database through an appropri-
ate conversion method.2

2. This means that it is possible to manage the data in one of other standard formats like XML. The choice
depends on the user’s specific requirements including skills, experience and preference.

 T A J  TEX

1 @Unpublished{Todoroki10AJTeX,
2 keywords = {paper, informatics, TeX},
3 author = {Shin-ichi Todoroki and Tomoya Konishi},
4 title = {\BibTeX -based manuscript writing support system for
5 researchers},
6 journal = {The Asian Journal of \TeX},
7 year = 2010,
8 volume = 4,
9 number = 2,
10 pages = {xx-xx},
11 deadline = {Oct 23 2010},
12 path = {work/2010/10/AJTeX},
13 homepage = {http://ajt.ktug.kr},
14 url = {http://oku.edu.mie-u.ac.jp/texconf10/proceedings.pdf},
15 }

F . An example of a bib file containing the fields added for this
system (slanted letters).

3 Example implementation

We implemented the system using BTEX and Ruby based on the following three poli-
cies, which are described in detail in the following subsections.

– All the required information is recorded in BTEX bib files.

– All the entries in the bib files are stored in a Ruby object from which required
information is extracted to compile a list.

– All the operations are performed through aweb browser including the execution
of applications for accessing local files.

3.1 Addition of new fields

We added some fields to the BTEX bib file to develop the functions of manuscript
management and deadline list generation (see F. 2).

keywords A comma-separated list of keywords

deadline The deadline date for submissions

path A local path to a folder for manuscript writing

homepage The URL of a website providing information about the publication

url The URL of an online publication

These are named to avoid overriding the definitions used in the biblatex pack-
age [4].

V , N. , D  

 BibTeX bib files Ruby Script

⇒ Fig. 2

B B B

Template file
 with embedded

Ruby scripts

⇒ Fig. 4 & 5

T

 Paper List

⇒ Fig. 1

L

HTML, LaTeX,
plain text, etc.

Call Output

-my_entries[]
 : array of Entry
+title : string ..., etc.

-fields{} : hash
 :author, :title, :year ...
+flag2show : boolean
+tag : list
+path_to_bibfile: string
+deadline : Time..., etc.

+format_HTML(fields)
+format_LaTeX(fields)
+format_text(fields)

+read_bibfile()
+write_file(template)

1

1..n

-select_entry2show()
-sort()
-itemize()

Entries Class Entry Class
Initialize

F . Procedure for generating a list through BTEX and Ruby.

3.2 Data processing through Ruby

We defined two classes in order to store bibliographic data in bib files (see F. 3 cen-
ter). The Entry class is for storing a bibliographic entry in which the field values are
stored as Hash. Several methods are defined in this class to output a single reference
in various formats including HTML, LATEX and plain text. The Entries class stores
an Array containing Entry instances. This class is initialized with specified bib files3

and contains several methods for selecting, modifying and formatting the instances to
generate a list.

Here we explain how to obtain a deadline list in HTML format by using these two
classes (see F. 3 bottom). Prepare a template file as shown in F. 4, in which some
Ruby scripts are embedded (see slanted sentences which describe the function of the
code) to process an pregenerated Entries instance and obtain a list from it. In other
words, we can control the structure of the list here includingwhich entries are selected,
how the entries are sorted, which fields are included in each item, and how each field
is expressed.

In addition, certain special links are generated by certain Entry class methods; for
example, a link to a manuscript file in the folder specified by the path field (see next
subsection in detail), a link to open GoogleMaps at the place specified by the address
field, and a link to open the list owner’s blog-based research notebook4 [2] on the date
specified by the year and month fields (see the center bottom of F. 1).

Finally, this template is converted by eRuby, which is a converter for embedded
Ruby code [8], into the final HTML form that appears as shown on the right in F. 1
through a web browser.

Using this procedure, we can generate various publication lists in several formats
organized by subject, author, publication method, etc. through appropriate template
files. F 5 shows another template for generating a publication list organized by
subject in LATEX format.

3. bibtex_parser [6] is used for this initialization process.
4. An electronic notebook served by a user-installed blog server with an authentication function.

 T A J  TEX

1 <html>
2 <head>List of Deadlines</head>
3 <body>
4 <%=
5 (Delete the entries if their deadlines are in the past)
6 (Sort the entries by deadline)
7 (Specify the fields to be shown (deadline, title, path, ...))
8 (Output the list in HTML)
9 %>
10 </body></html>

F . Example of a template file for generating a deadline list in
HTML format. In practice, the sentences in slanted are replaced with
embedded Ruby scripts.

1 \documentclass{article}
2 \begin{document}
3 ...
4 \section{Journals}
5 <%=
6 (Delete the entries in the future)
7 (Select the entries including a keyword, ’paper’)
8 (Sort the entries by date)
9 (Specify the fields to be shown (author, title, journal, ...))
10 (Output the list in LaTeX)
11 %>
12 \section{Conferences}
13 <%=
14 ...
15 (Select the entries including a keyword, ’conference’)
16 ...

F . Example of a template file for generating a publication list
organized by publicationmethod in LATEX format. In practice, the sen-
tences in slanted are replaced with embedded Ruby scripts.

3.3 Web interface

To launch certain applications from the web browser as described in F. 1, we must
launch an HTTP server that responds to local requests to execute a Common Gateway
Interface (CGI) script that launches a prescribed local application. F 6 shows a
sample program of an HTTP server using WEBrick, a Ruby library providing simple
HTTP web server services [9]. All the links for CGI execution in the publication lists
are generated by one of the methods defined in the Entry class. In other words, we
have to define these methods so that the HTTP server can accept the CGI requests
embedded in the lists.

For example, the server launches a shell terminal (or a folder window) after receiv-
ing the argument of the path value (see lines 30 and 35 in F. 6), and opens a window

V , N. , D  

to edit the database entry after receiving two arguments, the name of the bib file and
the line number at which the entry is registered in the file (see line 41 in F. 6).

In addition, we should be aware that the HTTP server shown in F. 6 can accept
a third person’s request. Authentication and a strict syntax check of the arguments
should be implemented if the server is launched on a computer with multiple users.

4 Conclusion

We proposed a manuscript writing support system for researchers relating to a web-
based personal publication list that helps them find their past manuscripts. It is useful
both for manuscript writing and for researchers’ self-promotion because their publica-
tion list is always updated and generated in various formats. Since the basic functions
of this system, which are described in Sec. 2, can be implemented with other refer-
ence management software, we hope that our idea will prove useful beyond the TEX
community. A subset of our software [3] will soon be made publicly available.

Acknowledgments

We are grateful to one of the reviewers for valuable discussion on Sec. 2.2.

References

1. Shin-ichi Todoroki, Manuscript writing support system for researchers based on hypertext list of
their achievements, (2008), Translated from Ceramics Japan, 42 (2007), no. 7, 520–524. http:
//pubman.mpdl.mpg.de/pubman/item/escidoc:28454

2. Shin-ichi Todoroki, Tomoya Konishi, and Satoru Inoue, Blog-based research notebook: personal
informatics workbench for high-throughput experimentation, Appl. Surface Sci. 252 (2006), no. 7,
2640–2645. http://pubman.mpdl.mpg.de/pubman/item/escidoc:28315

3. Tomoya Konishi,MyBibList. http://www.anan-nct.ac.jp/material/mybiblist/

4. Philipp Lehman, biblatex. CTAN:macros/latex/exptl/biblatex/

5. Oren Patashnik and Leslie Lamport, BibTeX. CTAN:biblio/bibtex/

6. Jeff Shantz, bibtex_parser. http://rubygems.org/gems/bibtex_parser

7. Wikipedia, Comparison of reference management software. http://en.wikipedia.org/wiki/
Comparison_of_reference_management_software

8. , eRuby. http://en.wikipedia.org/wiki/ERuby

9. ,WEBrick. http://en.wikipedia.org/wiki/WEBrick

10. Ruby Programming Language. http://www.ruby-lang.org

 T A J  TEX

1 #!/usr/bin/env ruby
2 require 'webrick'
3 include WEBrick
4

5 s = HTTPServer.new(:BindAddress => '127.0.0.1', :Port => 8000,
6 :DocumentRoot => File.join(Dir::pwd, "public_html"))
7

8 # Response to the access via /cgi-bin/*
9 s.mount_proc('/cgi-bin') { |req, res|
10 res.body =<<"EOS"
11 <html>
12 <body>
13 <script language="JavaScript" type="text/javascript"><!--
14 history.back()
15 // --></script>
16 <noscript>
17 Press the Return button of your browser.
18 Return
19 </noscript>
20 </body></html>
21 EOS
22 res.header["Content-Type"] = "text/html"
23

24 # Applications to be launched
25 key,val = req.unparsed_uri.gsub(/^[^?]*\?cmd=/,"").split(/:/,2)
26 case key
27 when "term"
28 val = File.expand_path("~") + "/" + val
29 if File.exist?(val) then
30 system("gnome-terminal --working-directory=#{val}")
31 end
32 when "gui"
33 val = File.expand_path("~") + "/" + val
34 if File.exist?(val) then
35 system("nautilus #{val}")
36 end
37 when "edit"
38 file_name , line_num = val.split(/:/)
39 if File.exist?(file_name) then
40 system("env XMODIFIERS=\"@im=NONE\" " +
41 "emacs +#{line_num} #{file_name} 2> /dev/null&")
42 end
43 end
44 }
45 Signal.trap(:INT){ s.shutdown }
46 s.start

F . Ruby-based HTTP server that launches predetermined ap-
plications via CGI, http://localhost:8000/cgi-bin/runcmd.cgi?
cmd=key:val (see line 25).

